sspa_KPCA
sspa_KPCA(
pathway_df, min_entity = 2, random_state = 0
)
Kernel PCA method for single sample pathway analysis
Args
- pathway_df (pd.DataFrame) : pandas DataFrame of pathway identifiers (keys) and corresponding list of pathway entities (values).
- min_entity (int) : minimum number of metabolites mapping to pathways for ssPA to be performed Entity identifiers must match those in the matrix columns
Methods:
.fit
.fit(
X, y = None
)
Fit the model with X.
Args
- X (pd.DataFrame) : pandas DataFrame omics data matrix consisting of m rows (samples) and n columns (entities). Do not include metadata columns
Returns
- self : object
.transform
.transform(
X, y = None
)
Transform X.
Args
- X (pd.DataFrame) : pandas DataFrame omics data matrix consisting of m rows (samples) and n columns (entities). Do not include metadata columns
Returns
pandas DataFrame of pathway scores derived using the kPCA method. Columns represent pathways and rows represent samples.
.fit_transform
.fit_transform(
X, y = None
)
Fit the model with X and transform X.
Args
- X (pd.DataFrame) : pandas DataFrame omics data matrix consisting of m rows (samples) and n columns (entities). Do not include metadata columns
Returns
pandas DataFrame of pathway scores derived using the kPCA method. Columns represent pathways and rows represent samples.
.fit_transform_
.fit_transform_(
X, y = None
)
Fit the model with X and transform X.
Args
- X (pd.DataFrame) : pandas DataFrame omics data matrix consisting of m rows (samples) and n columns (entities). Do not include metadata columns
Returns
pandas DataFrame of pathway scores derived using the kPCA method. Columns represent pathways and rows represent samples.