load_example_data
.load_example_data(
omicstype = 'metabolomics', processed = True
)
Loads example datasets
Args
- omicstype (str) : type of omics for example data. Available options are "metabolomics" or "transcriptomics". Metabolomics data are from Su et al 2020 https://doi.org/10.1016/j.cell.2020.10.037. Transcriptomics data - TO BE IMPLEMENTED
- processed (bool) : Load processed (normalised, scaled) or raw data
Returns
pre-processed omics data matrix consisting of m samples and n entities (metabolites/genes) in the form of a pandas DataFrame. Contains one of more metadata columns at the end.
t_tests
.t_tests(
matrix, classes, multiple_correction_method, testtype = 'ttest'
)
Performs two-sample independent t-tests
Args
- matrix (pd.DataFrame) : processed sample-by-compound metabolomics dataframe
- classes (pd.Series) : pandas series containing phenotype metadata (e.g. 'COVID', 'NON-COVID')
- multiple_correction_method (str) : see https://www.statsmodels.org/dev/generated/statsmodels.stats.multitest.multipletests.html for options
- testtype (str) : Default is t-test, "mwu" also available to implement the Mann Whitney U test
Returns
pd.DataFrame containing p-values and corrected p-values for each metabolite
pathwaydf_to_dict
.pathwaydf_to_dict(
df
)
Converts pathway dataframe to dictionary, with pathway IDs as keys and metabolite lists as values
Args
- df (pd.DataFrame) : Pandas DataFrame containing pathways
Returns
python dict pathway representation